Synergistic roles of platelet-derived growth factor-BB and interleukin-1beta in phenotypic modulation of human aortic smooth muscle cells.
نویسندگان
چکیده
The phenotype of smooth muscle cells (SMCs) plays an important role in vascular function in health and disease. We investigated the mechanism of modulation of SMC phenotype (from contractile to synthetic) induced by the synergistic action of a growth factor (platelet-derived growth factor, PDGF-BB) and a cytokine (interleukin, IL-1beta). Human aortic SMCs grown on polymerized collagen showed high expression levels of contractile markers (smooth muscle alpha-actin, myosin heavy chain, and calponin). These levels were not significantly affected by PDGF-BB and IL-1beta individually, but decreased markedly after the combined usage of PDGF-BB and IL-1beta. PDGF/IL-1beta costimulation also induced a sustained phosphorylation of Akt and p70 ribosomal S6 kinase (p70S6K). The effects of PDGF/IL-1beta costimulation on contractile marker expression and Akt and p70S6K phosphorylation were blocked by the phosphatidylinositol 3-kinase inhibitors wortmannin and LY294002 and by adenovirus expressing a dominant-negative Akt, and they were mimicked by constitutively active Akt. PDGF-BB/IL-1beta induced a sustained phosphorylation of PDGF receptor (PDGFR)-beta and its association with IL-1 receptor (IL-1R1). Such activation and association of receptors were blocked by a PDGFR-beta neutralizing antibody (AF385), an IL-1R1 antagonist (IL-1ra), as well as a specific inhibitor of PDGFR-beta phosphorylation (AG1295); these agents also eliminated the PDGF-BB/IL-1beta-induced signaling and phenotypic modulation. PDGF-BB/IL-1beta inhibited the polymerized collagen-induced serum response factor DNA binding activity in the nucleus, and this effect was mediated by the PDGFR-beta/IL-1R1 association and phosphatidylinositol 3-kinase/Akt/p70S6K pathway. Our findings provide insights into the mechanism of SMC phenotypic modulation from contractile to synthetic, e.g., in atherosclerosis.
منابع مشابه
Platelet-derived growth factor induces c-fms and scavenger receptor genes in vascular smooth muscle cells.
Vascular smooth muscle cells proliferate and transform to foam cells in the process of atherosclerosis. In the present study, we demonstrated that platelet-derived growth factor (PDGF)-BB induced expression of proto-oncogene c-fms in vascular smooth muscle cells, which normally do not express c-fms, isolated from either human umbilical artery or rabbit aorta. No effect of the protein kinase C a...
متن کاملMicroRNA-182 prevents vascular smooth muscle cell dedifferentiation via FGF9/PDGFRβ signaling
The abnormal phenotypic transformation of vascular smooth muscle cells (SMCs) causes various proliferative vascular diseases. MicroRNAs (miRNAs or miRs) have been established to play important roles in SMC biology and phenotypic modulation. This study revealed that the expression of miR‑182 was markedly altered during rat vascular SMC phenotypic transformation in vitro. We aimed to investigate ...
متن کاملPrevention of cardiac allograft arteriosclerosis by protein-tyrosine kinase inhibitor selective for platelet-derived growth factor receptor.
BACKGROUND Increased immunoreactivity of platelet-derived growth factor (PDGF)-AA, -Ralpha, and -Rbeta in intimal cells correlates with the development of cardiac allograft arteriosclerosis, a condition for which there is little or no current therapy. Therefore, we hypothesized that PDGF may have a rate-limiting role in the development of this disease. METHODS AND RESULTS The hypothesis was t...
متن کاملCyclosporin A selectively inhibits mitogen-induced cyclooxygenase-2 gene transcription in vascular smooth muscle cells.
The prostaglandin synthase cyclooxygenase-2 (COX-2) is produced by an immediate early response gene induced in most cells by a variety of stimuli. Several studies have shown that the immunosuppressant cyclosporin (CsA) interferes with prostanoid metabolism, but the mechanisms are unclear. Here we examine the effect of CsA on COX-2 mRNA induction in cultured rat vascular smooth muscle cells (VSM...
متن کاملDedicator of cytokinesis 2, a novel regulator for smooth muscle phenotypic modulation and vascular remodeling.
RATIONALE Vascular smooth muscle cell (SMC) phenotypic modulation and vascular remodeling contribute to the development of several vascular disorders such as restenosis after angioplasty, transplant vasculopathy, and atherosclerosis. The mechanisms underlying these processes, however, remain largely unknown. OBJECTIVE The objective of this study is to determine the role of dedicator of cytoki...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 103 8 شماره
صفحات -
تاریخ انتشار 2006